

Solar forecasts and their integration in the management of energy systems

Elke Lorenz TwinSolar Workshop DTU Riso, 21.08.2023 www.ise.fraunhofer.de

Agenda TwinSolar Workshop on Solar Forecasting Morning

	Morning
09:30	Introduction and Overview of solar irradiance forecasting models (Elke Lorenz)
10:00	NWP and satellite-based solar forecasting (Elke Lorenz)
10:30	Coffee Break
10:45	High-resolution shortest-term forecasting with all sky imagers (Nils Straub -> Elke Lorenz
11:30	From irradiance to PV power forecasting (Elke Lorenz)
12:00	Lunch

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

2

Agenda TwinSolar Workshop on Solar Forecasting Morning

12:00	Lunch
13:00	Recap and questions (Elke Lorenz)
13:15	Use of probabilistic forecasts for energy management in La Reunion (Josselin Le Gal La Salle)
13:45	Forecast based energy management (Arne Gross)
14:30	End of workshop

Agenda TwinSolar Workshop on Solar Forecasting Concept

Presentations: 30 – 45 Minutes

Questions and/or small tasks for the audience during presentations

4

Agenda TwinSolar Workshop on Solar Forecasting Concept

Presentations: 30 – 45 Minutes

Questions and/or small tasks for you during presentations

Please do not hesitate to ask and comment

- if you want more details
- if something is not clear for you
- If you have any comments

5

Introduction, motivation and overview of forecasting models

Elke Lorenz TwinSolar Workshop DTU Riso, 21.08.2023 www.ise.fraunhofer.de

Agenda

- 1. Motivation
- 2. Applications
- 3. Overview of forecasting models

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

7

Why solar forecasting?

Source: Heinemann, Energy Meteorology Lecture WS16/17

Conventional power plants:

- Controllable
- Demand driven: adaptation to given load profiles easily possible with a suitable mix of power plants

Why solar forecasting?

Source: Heinemann, Energy Meteorology Lecture WS16/17

Solar energy

- Supply driven
- Deterministic daily and seasonal course of irradiance

Why solar forecasting?

Source: Heinemann, Energy Meteorology Lecture WS16/17

Solar energy

- Supply driven
- Deterministic daily and seasonal course of irradiance
- Weather dependent

Variability of solar power

An important – and new – constraint for the future energy supply system is the **variability of production rates**.

temporal variability

Information on solar irradiance is essential

for efficient integration of solar energy to the energy supply system

Electricity generation in April 2020

Source: www.energy-charts.de Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, EEX;

Electricity generation in April 2020

Source: www.energy-charts.de Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, EEX;

Electricity generation in Mai 2020

Source: www.energy-charts.de Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, EEX;

Electricity generation in Mai 2020

Source: www.energy-charts.de Datasource: 50 Hertz, Amprion, Tennet, TransnetBW, EEX;

Balancing generation and demand

- One of the main task of RES integration consists in maintaining constantly a <u>balance between generation</u> <u>and demand</u>
- Estimates and forecast of the regional PV power generation are needed to maintain an equilibrium between generation and demand

http://www.ventea.fr

Source: Y. M Saint-Drenan 2016

Balancing generation and demand

Marketing at the European Energy Exchange

by Transmission System Operators

Regional forecasts

Fraunhofer

Marketing at the European Energy Exchange

By Transmission System Operators

Regional forecasts

Direct marketing

Forecasts for single PV plants

Virtual power plants

Forecasts for clusters of distributed generation systems

Marketing at the European Energy Exchange

Energy trading and forecast horizons

Marketing at the European Energy Exchange

Energy trading and forecast horizons

Costs for balancing power

FVEE – Jahrestagung 2016 : Forschung für die Energiewende – Die Gestaltung des Energiesystems

Cost distribution for direct marketing Example: AMIRIS Simulation over 6 years

Costs for balancing power

Marketing at the European Energy Exchange

Energy trading and forecast horizons

Marketing at the European Energy Exchange

Energy trading and forecast horizons

Congestion Magnagement

Solar power forecasting for energy management and system integration

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

27

Agenda

1. Motivation

2. Applications

3. Overview of forecasting models

Satellite-based irradiance models

Surface solar irradiance and atmospheric processes

Clear sky irradiance

- Daily/Seasonal course
- atmospheric composition

Satellite-based irradiance models

Surface solar irradiance and atmospheric processes

All sky irradiance, including clouds

- Strong impact on solar surface irradiance
- Highly variable

Overview of irradiance prediction models

Temporal scales of forecasts

Temporal scales: Forecast horizon, Temporal resolution of forecasts, Update Frequency

Spaital sclaes: Spatial resolution, spatial coverage

How ist forecast horizon and spatio/temporal resolution related?

Check for Roskilde at https://www.wetteronline.de/wetter/oldenburg

- Forecasts up to 90 minutes
- Forecasts for today and tomorrow (heute/morgen)
- Forecasts for the more thatn 2 days ahead: morning

Temporal scales of forecasts

Temporal scales: Forecast horizon, Temporal resolution of forecasts, Update Frequency

Spaital sclaes: Spatial resolution, spatial coverage

How ist forecast horizon and spatio/temporal resolution related?

Check for Roskilde at https://www.wetteronline.de/wetter/oldenburg

- Forecasts up to 90 minutes: 15 minutes
- Forecasts for today and tomorrow (heute/morgen): hourly
- Forecasts for the more thatn 2 days ahead: morning, afternoon, evening, night

Thank you for your attention!

Elke Lorenz Power Solutions <u>Vorname.Nachname@ise.fraunhofer.de</u>

Fraunhofer ISE Heidenhofstraße 2 79110 Freiburg www.ise.fraunhofer.de **Fraunhofer** ISE