

TwinSolar workshop BIPV

Appearance of BIPV

Agenda

What is a colour?

- Physics of light and colour
- Human colour vision

How can we quantify colours?

- Colour matching functions
- Colour spaces
- Colour parameters

How does BIPV achieve colouration?

- Absorptive vs structural colours
- Associated power losses

What are colours?

"Spectral colours" (monochromatic)

- Spectral property of light
- Visible range: ~380 750 nm

"Non-spectral colours"

• Grayscale colours, shades

CC BY-SA 3.0: InfinitePS, 2013, https://commons.wikimedia.or g/ wiki/File:MagentaIcon.png

CC BY 2.0: geishaboy500, 2012, https://www.flickr.com/photos / geishaboy500/7241678418/

Human colour vision

Visual system in the eye:

- Focusing system (lenses)
- Receptive system (retina)

Two main kinds of photoreceptors:

- Rods: Low-light ("scotopic") vision
- Cones: Daylight ("photopic") vision
 3 types: red, green and blue

CC BY-SA 3.0: Pereru, 2012, https://commons.wikimedia.org/wiki/File:Simple_d iagram_of_the_human_eye.png

CC BY 4.0: J.G. Betts, K.A. Young, J.A. Wise, E. Johnson, B. Poe, D.H. Kruse, O. Korol, J.E. Johnson, M. Womble, P. DeSaix, "Anatomy and Physiology", 2013, OpenStax, Section 14-1,

https://openstax.org/books/anatomy-and-physiology/pages/14-1-sensoryperception

Colour matching functions

Correlate spectra to colour coordinates

Experiments by W.D. Wright and J. Guild in 1920s

Follow human colour vision ²

$$X = \int_{\lambda} L_{e,\Omega,\lambda}(\lambda)\bar{x}(\lambda)d\lambda$$
$$Y = \int_{\lambda} L_{e,\Omega,\lambda}(\lambda)\bar{y}(\lambda)d\lambda$$
$$Z = \int_{\lambda} L_{e,\Omega,\lambda}(\lambda)\bar{z}(\lambda)d\lambda$$

Different colour spaces

- CIE 1931 XYZ
- CIE 1931 RGB

Technical colour spaces

RGB - "red - green - blue"

- In digital displays
- Variety of proprietary colour spaces
- · Cover only parts of the visible gamut

CMYK - "cyan - magenta - yellow - black"

• Used for printing

Actual display and print colours are device dependent

Advanced colourspaces

"Commission Internationale de l'Éclairage" "International Commission on Illumination" 0.9 -520 0.8540 **CIE 1931** 0.7 XYZ and RGB 560 0.6 500 0.5xyY derived colorspace y 0.4 -• Chromaticity: 0.3- $-x = \frac{X}{X+Y+Z}$ 0.2 $- \mathbf{y} = \frac{Y}{X+Y+Z}$ 0.1 0.0

0.1

0.0

 $- z = \frac{Z}{X+Y+Z}$

• x + y + z = 1

• Brightness: Y

580

2017, https://en.wikipedia.org/wiki/File:Visible_gamut_with in

CIEXYZ color space D65 whitepoint mesh.webm

Advanced colourspaces

Problem: CIE 1931 is not perceptually uniform

Two new colourspaces developed in 1976:

- CIELAB
 - L*a*b*
 - For colourful surfaces and dyes
- CIELUV
 - $-L^*u^*v^*$
 - For colour displays

Lightness: L* Chromaticity: a*, b*, u*, v*

Better perceptual uniformity but not perfect

CC BY-SA 4.0: Michael Horvath (SharkD), Christoph Lipka, 2017,

https://en.wikipedia.org/wiki/File:Visible_gamut_withi n_CIELAB_color_space_D65_whitepoint_mesh.webm CC BY-SA 4.0: Michael Horvath (SharkD), Christoph Lipka, 2017,

https://en.wikipedia.org/wiki/File:Visible_gamut_with in_CIELUV_color_space_D65_whitepoint_mesh.webm

Advanced colourspaces

Colour appearance models

- Refinements of CIELAB
- E.g. CIECAM02, CAM16, CIECAM16

Cover additional phenomena:

- Compensation of white point (colour temperature) of a light source
 - "Chromatic adaptation"
- Effects of the background colour and brightness
- Influence of brightness on colour and contrast

More complicated Require more inputs

Accurate descriptions of colour perception is very challenging! CIELAB is a good, simple baseline for comparison!

The CIELAB colour space

Relies on a "standard observer"

- Device-independant
- Like CIE 1931 XYZ

Relies on a "reference white"

- Compensates for different illumination conditions
- D65 or D50 (printing industry)

 $X_n Y_n Z_n = [95, 100, 108.9]$

CIE 1931 XYZ colour coordinates of reference white standard observer, D65 standard illuminant) (3° L*a*b* = [85.5, -18.3, 16.7] XYZ = [56, 67, 54] $L^* = 116 f\left(\frac{Y}{Y_n}\right) - 16$ **CIE 1931 XYZ** CIELAB $-f\left(\frac{Y}{Y_n}\right)$ $\text{if } t > \delta^3 \\$ $a^* = 500$ f(t) =colour colour otherwise $b^* = 200 \left(f \left(\frac{Y}{V} \right) \right)$ coordinates coordinates

D65 standard illuminant

Colour charts and palettes

Variety of systems

- RAL colour standard (Germany)
- Pantone Colour Matching System (US)
- NCS Colour Palette (Sweden)
- DIC Colour System Guide (Japan)
- (...)

Technically not colourspaces

- Physical or digital representations
- Used for selecting colours

Most have defined colour coordinates Some are proprietary

CC BY-SA 3.0: Colourfeeling, 2009, https://commons.wikimedia.org/wiki/ File:RAL_K5_F%C3%A4cher_RGB.jpg

Colour metrics

Lightness (L*)

- Ranges from black to white
- Perception of the (total) reflectance of a surface
- Compared to a similarly lit, perfectly white object

Luminance (L_v)

- Photometric quantity
- Luminous intensity per unit area in a certain direction
- Unit: [cd/m²]

Brightness (Q)

- Perception of the luminance of an object
- Depends on the background and context

CC BY-SA 3.0: Mahlum, McSush, 2009, https://commons.wikimedia.org/wiki/File:ColorValu e.svg

CC0 1.0: Lloyd TheCheeseKing, 2021, https://commons.wikimedia.org/wiki/File:Whites_illusion.svg

Colour metrics

Colourfulness

• Degree of difference from a colour to gray

Chroma (C*)

• Colourfulness relative to the brightness of a white colour under similar conditions

•
$$C_{ab}^* = \sqrt{a^{*2} + b^{*2}}$$

Saturation (s)

• Colourfulness relative to the objects own brightness

•
$$S_{ab} \approx \frac{C_{ab}^*}{L^*}$$

Hue (h)

- Differentiates between individual colours
- Often given as an angular quantity
- $h_{ab} = atan2(b^*, a^*)$

CC BY-SA 4.0: Crossover1370, 2020, https://commons.wikimedia.org/wiki/ File:Color_circle_(RGB).svg

Metamerism

Different spectral power distributions leading to identically perceived colours

Depends on illumination

- Reflected colour is product of illumination colour and spectra reflectance
- Often fails under different illumination

Depends on observer

Colourblindness increases metamerism

Different spectral distributions result in more or less efficient BIPV

Adapted from CC BY-SA 4.0: MikeRun, 2019, https://commons.wikimedia.org/wiki/File:Metamerism.svg

From materials to colours

2 major ways to achieve colours:

- Absorptive colours (pigments)
- Structural colours (thin film stacks)

Overall reflections from PV

Affected by the surface glass

• Specular vs diffuse reflections

Fresnel reflections

• $R = \left|\frac{n_1 - n_2}{n_1 + n_2}\right|^2$ (single interface at $\theta = 0^\circ$)

Contained within IAM losses

• Incidence angle modifier

• $IAM(\theta) = \frac{I_{SC}(\theta)}{I_{SC}(0^\circ) \cdot \cos \theta}$

Reflections can lead to glare

- Increased scattering with rough surfaces
- Structured glass, satinated / frosted glass

CC-BY SA 3.0: GianniG46, 2010, https://commons.wikimedia.org/wiki/File:Lambert2. gif

Printed glass (pigments)

Digital printing on glass:

- · Ceramic frit inks used
- Durable enamel through high temperature process

Freedom of design

- Inks not designed for good photon economy
- Variation in pattern / density

Can also be enameled (screen printed)

Coloured interlayers (pigments)

Commercial: based on pigments

• Polymer films, fabrics, ...

High flexibility

- Roll-to-roll production
- Independent choice of glass

Lamination on top of glass possible

Performance impact (pigments)

Up to 50% loss

• Depending on colour

Increased IAM losses

Mostly due to poorly optimized pigments

100 90 Performance [%] 80 70 60 50 40 Terracota Ref. 2 Dark Grey Light Grey Gold Falu Red Verdigris White Ref. 1 Light Terracota Grey Beige Pine Green Barbados Beige Terra Orange Dark Brown

Coloured interlayers

Structural colours

Inspired by nature (Morpho butterfly, etc)

Based on dielectric thin-film stacks

- Applied directly to glass (inflexible)
- Change in refractive index (Fresnel reflections)

CC BY-SA 4.0: Didier Descouens, 2011, https://en.wikipedia.org/wiki/File: Morpho_didius_Male_Dos_MHNT.jpg

CC BY 4.0: Nicoguaro, 2016, https://commons.wikimedia.org/wiki/File:Thin_film_interference.svg

High angular dependency

- Hue (iridescence)
- Saturation

https://solarlab.dk/references-and-inspiration/new-build-cis-campus-covered-with-custom-solar-facade/

Appearance measurements – angular uniformity

Performance impact (structural colours)

Very low transmission losses

• No absorption losses

Additional IAM losses

• Dominated by Fresnel reflections

Performance limits

Theoretical pillbox spectra

- Assuming no absorption in colouration materials
- 2 reflection pillboxes match all possible colours

Losses for theoretical spectra:

BREAK

TwinSolar workshop BIPV

Glare mitigation and associated losses

Why glare?

Low frequency, high impact risk

- Local or regional legislature
- Unclear requirements for assessment

No standardized methods or metrics

- Threshold values
- Modelling constraints

High importance for BIPV

- Atypical orientations
- High variety of products
- Complex glass surfaces

L. Brotas, J. Wienold, "Solar reflected glare," presentation, Radiance community workshop, 2014

P. Corti, P. Bonomo, F. Frontini, P. Macé, E. Bosch, "Building Integrated Photovoltaics: A practical handbook for solar buildings' stakeholders – Status Report 2020," tech. report, 2020

Glare threshold values

Levels of glare:

- Retinal burn damage (permanent)
- Flash blindness (temporary)
- Discomfort or disability glare

Threshold values:

- Physiological/medical data
- Limits of retinal irradiance
- Can be converted to source radiance through known properties of the human eye in sunny conditions [1]:

$$E_r \approx \frac{\pi}{578} L_s$$

Retinal burn damage and flash blindness thresholds [1]

Glare type	Retinal irradiance
Retinal burn damage [1]	100-400 [kW/m ²]
Flash blindness [1]	0.1-1 [kW/m ²]
Discomfort glare [2]	1.5-4.8 [W/m ²]

Glare threshold values

[1] C.K. Ho, C.M. Ghanbari, R.B. Diver, "Hazard analysis of glint and glare from concentrating solar power plants", SolarPACES 2009, September 2009

[2] G. Bargary, Y. Jia, and J. L. Barbur, "Mechanisms for discomfort glare in central vision," Investig. Ophthalmol. Vis. Sci., vol. 56, no. 1, pp. 464–471, January 2015

BRDF and glare

Bi-directional reflectance distribution function:

• $B(\theta, \alpha) = \frac{dL_r(\alpha)}{dE_s(\theta)}$ • $E_r \approx \frac{\pi}{578} B(\theta, \alpha) E_s$

BRDF threshold values:

• Assuming $E_s = 1000 \text{ W/m}^2$

BRDF measurements

- PV mini-modules with 8 different glass surfaces
- Single-plane gonioreflectometer
- Integrated reflectance 300-980 nm

Single-plane gonioreflectometer

Glare threshold values (assuming $E_s = 1000 W/m^2$ for BRDF)

Glare type	Retinal irradiance	BRDF
Retinal burn damage	100-400 [kW/m ²]	1.8-7.4 [10 ⁴ sr ⁻¹]
Flash blindness	0.1-1 [kW/m ²]	18-184 [sr ⁻¹]
Discomfort glare	1.5-4.8 [W/m ²]	0.25-0.85 [sr ⁻¹]

Results: PV reference glass

- Slightly uneven surface structure
- Diffusion around specular reflection angles (α=θ)

For specular reflections:

- Discomfort glare regardless of AOI
- Flash blindness risk at high AOI
- Peak BRDF follows $f(\theta) = a + b \cdot e^{c \cdot \theta}$

Results: Anti-reflective coating

Flat, smooth glass surface

- Increased specular reflections
- No observable diffusion
- Flash blindness risk at all AOIs

AR coated glass surface

- Reduces glare potential to approx. reference sample values
- Increases diffusion
- Insufficient to prevent glare

Results: Satinated glass

Microstructured glass surface

- Sandblasted reference glass
- Acid-etched PV glass

Diffuse reflections

- Increased reflectance at high AOIs
- Forward scattering along glass surface at high AOIs

ndne

discomfort

textured (medium)

20°

view angle α

40°

60°

80°

Results: Textured glass

10²

 10^{1}

10⁰

10-1

10⁻²

10⁻³

-20°

0°

total BRDF B [sr⁻¹]

AOI 0

0°

30°

60°

75°

Albarino G

What is the performance impact?

Satinated PV glass is great...

- Reduced glare risk
- Reduced angular-dependent transmission losses (increased IAM at high incidence angles)
- More uniform appearance with some coloration technologies

... but...

- How does it affect transmittance at normal incidence?
- Is there a difference between different satination technologies?
 - Can we explain the differences?
 - Acid-etching of glass uses HF-acid, can it be replaced?

•

Samples

- References
- Acid-etched glass
- Sandblasted glass
- Laser-satinated glass

Acid-etched glass:

- Different satination degrees
- Low-iron and "normal" float glass

#	Description	Samples
1	Lightly structured low-iron float glass	4
2	#1 sandblasted	3
3	#1 laser-satinated	3
4	Acid-etched low-iron float glass	3
5	Acid-etched low-iron float glass	3
6	Acid-etched float glass	3
7a	Flat low-iron float glass	1
7b	Flat float glass	1
8a	#7a lightly acid-etched	1
8b	#7b lightly acid-etched	1
9a	#7a acid-etched variant 1	1
9b	#7b acid-etched variant 1	1
10a	#7a acid-etched variant 2	1
10b	#7b acid-etched variant 2	1

Transmittance loss in coupons

Coupon samples:

- 2-BB mono-Si cells (efficiency ~19%)
- EVA, black BS

IV-measurements before and after encapsulation with Pasan cell tester

Results:

- Acid etched glass < 1 p.p. additional loss
- High losses for sandblasted and lasersatinated glasses
- Not enough samples (#7-10)

#	Description	Samples
1	Lightly structured low-iron float glass	4
2	#1 sandblasted	3
3	#1 laser-satinated	3
4	Acid-etched low-iron float glass	3
5	Acid-etched low-iron float glass	3
6	Acid-etched float glass	3
7a	Flat low-iron float glass	1
7b	Flat float glass	1
8a	#7a lightly acid-etched	1
8b	#7b lightly acid-etched	1
9a	#7a acid-etched variant 1	1
9b	#7b acid-etched variant 1	1
10a	#7a acid-etched variant 2	1
10b	#7b acid-etched variant 2	1

IAM losses

Results:

- IAM significantly higher at AOI > 55° for acid-etched glasses
- Minor reductions at low angles
- Further losses for sandblasted and lasersatinated glasses

#	Description	Samples
1	Lightly structured low-iron float glass	4
2	#1 sandblasted	3
3	#1 laser-satinated	3
4	Acid-etched low-iron float glass	3
5	Acid-etched low-iron float glass	3
6	Acid-etched float glass	3
7a	Flat low-iron float glass	1
7b	Flat float glass	1
8a	#7a lightly acid-etched	1
8b	#7b lightly acid-etched	1
9a	#7a acid-etched variant 1	1
9b	#7b acid-etched variant 1	1
10a	#7a acid-etched variant 2	1
10b	#7b acid-etched variant 2	1

Combined losses

Acid-etched samples:

- Perform better at AOI > 55°
- Negligible losses at low incidence angles
- Higher satination is favourable

Other samples perform much worse

• What could be the reason?

#	Description	Sample
1	Lightly structured low-iron float glass	4
2	#1 sandblasted	3
3	#1 laser-satinated	3
4	Acid-etched low-iron float glass	3
5	Acid-etched low-iron float glass	3
6	Acid-etched float glass	3
7a	Flat low-iron float glass	1
7b	Flat float glass	1
8a	#7a lightly acid-etched	1
8b	#7b lightly acid-etched	1
9a	#7a acid-etched variant 1	1
9b	#7b acid-etched variant 1	1
10a	#7a acid-etched variant 2	1
10b	#7b acid-etched variant 2	1

Surface structure

Through-light visual microscopy

Satinated glasses:

- Irregular, quasi-circular depressions
- Smooth surface appearance

Sandblasted glass:

- Sharp surface edges
- Dirty-white appearance
- Continuous abrasion

Laser satinated glass:

- Regular, deep wells
- Glittery appearance

	Description	Sample
	Lightly structured low-iron float glass	4
	#1 sandblasted	3
	#1 laser-satinated	3
	Acid-etched low-iron float glass	3
	Acid-etched low-iron float glass	3
	Acid-etched float glass	3
а	Flat low-iron float glass	1
b	Flat float glass	1
a	#7a lightly acid-etched	1
b	#7b lightly acid-etched	1
a	#7a acid-etched variant 1	1
b	#7b acid-etched variant 1	1
0a	#7a acid-etched variant 2	1
0b	#7b acid-etched variant 2	1

Summary & Conclusions

Measured 8 different satinated surfaces

- Acid-etched
- Sandblasted
- Laser-satinated

Transmittance and IAM measurements on coupons

- At AOI > 55°, satinated glass outperforms flat glass
- Especially useful for non-optimal orientations and tilts
 e.g. building-integrated PV, product-integrated PV
- Sandblasted and laser-etched glasses are not viable alternatives

#	Description	Samples
1	Lightly structured low-iron float glass	4
2	#1 sandblasted	3
3	#1 laser-satinated	3
4	Acid-etched low-iron float glass	3
5	Acid-etched low-iron float glass	3
6	Acid-etched float glass	3
7a	Flat low-iron float glass	1
7b	Flat float glass	1
8a	#7a lightly acid-etched	1
8b	#7b lightly acid-etched	1
9a	#7a acid-etched variant 1	1
9b	#7b acid-etched variant 1	1
10a	#7a acid-etched variant 2	1
10b	#7b acid-etched variant 2	1

Time for questions!

