

Basic model and concepts, NWP and satellite-based solar forecasting Elke Lorenz

10.07.2023 www.ise.fraunhofer.de

Agenda

- 1. Basic models and concepts
- 2. NWP forecasts
- 3. Satellite based forecasts

1. Basic models and concepts

- 2. NWP forecasts
- **3. Satellite based forecasts**

Agenda

1. Basic models and concepts

- i. Clear sky models
- ii. Clear sky index

4

Definition "clear sky irradiance: irradiance for a cloudless sky at a given site, time and atmospheric conditions

Describe daily and seasonal course of irradiance

Used in many radiation models

Used for normalization of irradiance

Source: Kühnert, 2015

5

Definition "clear sky irradiance" irradiance for a cloudless sky at a given site, time and atmospheric conditions

- used in many radiation models
- used for normalization of irradiance

Source: Pierre Ineichen

What do you see? What effect on GHI do you expect?

6

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

Atmospheric transmission depends on:

Geometry

7

- NO2, CO2, O2, N, etc. constant effect
- O3 slight dependence
- water vapor (WV), aerosols (AOD) strong dependence

Source: Pierre Ineichen

© Fraunhofer ISE Integer == f(geometry, air molecules, ozone, aerosols, water vapor)

Available models:

- Parametric models
- Radiative transfer models

Quality of clear sky calculations strongly depends on atmospheric input parameters

"Good" accuracy of available models, for "good" input parameters

Source: Pierre Ineichen

Clear sky index

Clear sky index

Relation of irradiance incident on the horizontal earth's surface GHI to clear sky irradiance GHI_clear

k*=GHI/GHI_{clear}

Source: Kühnert, 2015

9

Clear sky index

Clear sky index

relation of irradiance incident on the horizontal earth's surface GHI to clear sky irradiance GHI_clear

k*=GHI/GHI_{clear}

measure of cloud transmissivity

trend-free for a perfect clear sky model

Forecast Evaluation RMSE

Foreasts are evaluated by comparison to ground measurements

Different scores are used for forecast evaluation

Frequently used: Root mean square error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_p(i) - x_m(i))^2}$$

n: number of data pairs $x_p(i)$: predicted value $x_m(i)$: measured value

Agenda

1. Basic models and concepts

2. NWP forecasts

3. Satellite based forecasts

Description of atmospheric processes with differential equations (prognostic equations) and parametrizations

Momentum

$$\begin{aligned} \frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u &- \frac{uv}{a} \tan \varphi = fv - \frac{1}{\rho \, a \cos \varphi} \left(\frac{\partial p'}{\partial \lambda} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial \lambda} \frac{\partial p'}{\partial \sigma} \right) - \left(\frac{\nabla \cdot \mathbf{F}}{\rho} \right) \cdot \mathbf{e}_{\lambda} \\ \frac{\partial v}{\partial t} + \mathbf{v} \cdot \nabla v + \frac{u^2}{a} \tan \varphi &= -fu - \frac{1}{\rho \, a} \left(\frac{\partial p'}{\partial \varphi} - \frac{\sigma}{p^*} \frac{\partial p^*}{\partial \varphi} \frac{\partial p'}{\partial \sigma} \right) - \left(\frac{\nabla \cdot \mathbf{F}}{\rho} \right) \cdot \mathbf{e}_{\varphi} \\ \frac{\partial w}{\partial t} + \mathbf{v} \cdot \nabla w &= \frac{g \, \rho_0}{\rho \, p^*} \frac{\partial p'}{\partial \sigma} + g \frac{\rho_0}{\rho} B - \left(\frac{\nabla \cdot \mathbf{F}}{\rho} \right) \cdot \mathbf{e}_z \end{aligned}$$

Pressure

$$rac{\partial p'}{\partial t} + {f v} \cdot
abla p' - g \,
ho_0 \, w = -\gamma \, p \, D + rac{\gamma \, p}{T} \left\{ rac{Q}{c_p} + T rac{dlpha}{dt}
ight\}$$

Temperature

$$rac{\partial T}{\partial t} + \mathbf{v} \cdot
abla T = rac{1}{
ho \, c_p} \left(rac{\partial p'}{\partial t} + \mathbf{v} \cdot
abla p' - g \,
ho_0 \, w
ight) + rac{Q}{c_p},$$

Humidity

$$rac{\partial q^k}{\partial t} + \mathbf{v}\cdot
abla q^k = -rac{1}{
ho}\left(
abla\cdot\mathbf{J}^k +
abla\cdot\mathbf{F}^k
ight) - rac{1}{
ho}I^k$$

©ECMWF, R. Hagedorn

Solving equations numerically on a grid

- Horizontal discretization
- Vertical levels
- Temporal discretization
- Limited by computation costs

Figure 6. Vertical levels of the ECMWF model.

Global and meso-scale models

Global models cover the complete Earth

- spatial resolution ~12-100 km
- temporal resolution, 1-6 hours

Meso-scale/local/regional models allow for higher resolution

- spatial resolution ~1-7 km
- temporal resolution, hourly
- boundary conditions from global model
- multiple nests

Physics parametrizations

Modelling of processes not explicitly resolved by the grid

- Radiation
- Condensation
- Convection
- Turbulence
- Land Surface Processes

©ECMWF, R. Hagedorn

Initial conditions and data assimilation

Assimilation of worldwide meteorological observations:

- Satellite data
- Ground based sensors
- Sondes,...

Observations and short-range forecasts are combined by calculating a weighted average for all grid points where the weights depend on the respective characteristic errors.

©ECMWF, R. Hagedorn

Provided by weather services

Examples:

Global models

Integrated forecast systems (IFS) of the European Centre for Medium-Range Weather Forecasts (ECWMF)

Global forecast system GFS a National Contors for Environmental Prediction (NCEP) U

Regional models

German Meteorological service (D

Meteo France: AROME

NWP irradiance forecasting

resolution: 1-3 hours, 3-20 km forecast horizon: 3 to 15 days ahead

COSMO EU, dir. irradiance 2004-05-02, 12:00

NWP Ensembles

Several runs of a weather prediction model

variation in initial conditions

variation in model physics

Distribution of forecast results describes forecast uncertainty

Forecast uncertainty depends on weather conditions!

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

- 1. Basic models and concepts
- 2. NWP forecasts
- 3. Satellite based forecasts

Agenda

3. Satellite based forecasts

- Satellite-based irradiance retrieval
- Satellite-based irradiance forecasting

Solar radiation data from satellite images

Availability

Europe and La Reunion: Meteosat Second Generation Satellites

High spatial and temporal resolution

- 1 km / 3 km at sub-satellite point
- 15 minutes

Services

MSG 0 Degrees

Solar radiation data from satellite images

Availability

Europe and La Reunion: Meteosat Second Generation Satellites

High spatial and temporal resolution

- 1 km / 3 km at sub-satellite point
- 15 minutes

Services

- MSG 0 Degrees
- MSG- IODC

Satellite-based irradiance models

Surface solar irradiance and atmospheric processes

Solar radiation scattered back by the Earth/Atmosphere is measured with satellite instruments in the visible spectral range

25 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

26

Satellite images

Meteosat Second Generation (MSG)

High resolution visible (HR-VIS) channel: 600-900nm

Resolution at sub-satellite point

- 1 km x 1 km
- 15 minutes

cloud detection based on reflected radiation

- bright clouds (high Albedo)
- dark surface
 - very dark water (very low Albedo)
 - dark ground (low Albedo)

EUMETSAT

Source: https://view.eumetsat.int/productviewer?v=default

Solar surface irradiance from satellite data

Heliosat method

28 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

Solar surface irradiance from satellite data

Data Products

High resolution maps of current irradiance conditions

- Update very 15 minutes
- Spatial resolution 1 or 3 km at sub satellite point

Solar surface irradiance from satellite data 20.08.2023 10:15

EUMETSAT

Source: https://view.eumetsat.int/productviewer?v=default

SOURCE: EMETSAT/KNMI https://msgcpp.knmi.nl/adaguc-viewer/index.html

Solar surface irradiance from satellite data

Data Products

High resolutions maps of current irradiance conditions

- Update very 15 minutes
- Spatial resolution 1 or 3 km at sub satellite point

Time-series of GHI/DNI

15 minute resolution

Solar surface irradiance from satellite data

Comparison to ground-measured irradiance

Visual assessment

Satellite based irradiance prediction

Detection and extrapolation of cloud motion

CMV – Cloud Motion Vectors

Computation of optical flow from subsequent cloud index images

Basic assuption: Cloud structures remain constant during motion

Basic identification of similar patterns in consecutive images

Methods:

- Block Matching
- Based on Machine Learning

cloud motion vector field

Satellite based irradiance prediction

CMV – Cloud Motion Vectors

Computation of predicted flow from subsequent cloud index images

Prediction of cloud motion

Application of cloud motion vectors to current image to predict future cloud index images

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

34

Satellite based irradiance prediction

CMV – Cloud Motion Vectors

Computation of predictable flow from subsequent cloud index images

Prediction of cloud motion

Application of cloud motion vectors to current image to predcit future cloud index images

Smoothing

Irradiance prediction

Infer irradiance from predicted cloud index images (Heliosat Method)

Comparison of satellite-based and NWP predictions

CMV – Cloud Motion Vectors

Computation of predictable flow from subsequent cloud index images

Prediction of cloud motion

Application of cloud motion vectors to current image to predict future cloud index images

$\frac{1}{t_0} - \Delta t$

Smoothing

Irradiance prediction

Infer irradiance from predicted coud Method)

NWP irradiance forecasting

resolution: 15 minutes, 1-3 km

forecast horizon: several hours ahead

36

Comparison to ground measured irradiance

Single stations: intraday, 18 UTC, Mai 2012, MVF-horizon: 1hours

What can you see when comparing NWP forecasts (ECMWF) and satellite based forecasts MVF to measurements?

Comparison to ground measured irradiance

Single stations: intraday, 18 UTC, Mai 2012, MVF-horizon: 1hours

Good agreement with measurements for clear sky day for both NWP and satellite-based

Satellite-based forecasts capture fluctuations in variable cloud conditions for an hour ahead

RMSE in dependence of forecast horizon

Different scores are used for forecast evaluation

Frequently used: Root mean square error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_p(i) - x_m(i))^2}$$

n: number of data pairs $x_p(i)$: predicted value $x_m(i)$: measured value

DWD-Standort Hamburg-Fuhlsbüttel, Mai-June 2019

39

RMSE in dependence of forcast horizon

Different scores are used for forecast evaluation

DWD-Standort Hamburg-Fuhlsbüttel, Mai-June 2019

40

Overview of irradiance prediction models

Thank you for your attention!

Elke Lorenz Division Power Solutions <u>elke.lorenz@ise.fraunhofer.de</u>

Fraunhofer ISE Heidenhofstraße 2 79110 Freiburg www.ise.fraunhofer.de **Fraunhofer** ISE

Atmospheric input parameters

Climatological monthly mean values of AOD / Link Turbidity derived from

- satellite data
- ground measurements
- numerical weather prediction models

Source: User's Guide to the CAMS Radiation Service, Schroedter-Homscheidt 2016

Atmospheric input parameters

Climatological monthly mean values of AOD / Link Turbidity derived from:

- satellite data
- ground measurements
- numerical weather prediction models

Daily/three-hourly values of AOD derived with numerical weather prediction models:

e.g. CAMS

44

Clearness index

Clearness index

relation of irradiance incident on the horizontal earth's surface GHI to the horizontal extraterrestrial irradiance G_0

 $k_t = GHI/I_{TOA}$

measure of atmospheric transmissivity

independent of solar geometry

still influenced by path length through atmosphere

 $I_{TOA} = TSI * \varepsilon * \cos \theta_{zenith}$

- TSI: Total solar irradiance or solar constant
- ε: eccentricity factor

Factors influencing clear sky irradiance

starting from the base-case: AM 1.5, 1100 m elevation, broadband AOD = 0.03, W = 0.75 cm, and ozone = 320 dobson units (DU). Source: Solar Energy Forecasting and Resource Assessment (Kleissl, 2013) AM 3: $\Theta_z = 70.5^\circ$

Solar radiation data from satellite images

Availability

world-wide coverage

long term data: > 20 years

