

High-resolution shortest-term forecasting with all sky imagers

Nils Straub, Anna Dittmann und Elke Lorenz Workshop Solar forecasts and their integration in the management of energy systems 20.08.2023 www.ise.fraunhofer.de

Agenda

1. Introduction

2. Steps of a forecasting system

3. Examples and challenges

What is All Sky Imager based forecasting?

What is an All Sky Imager (ASI)?

- Camera with a fisheye lens
- Takes 360° pictures of the whole sky

Forecasting method:

- Detection of single clouds
- Projection of the cloud movement into the future
- Very high resolution
- Ramp forecasting

What is All Sky Imager based forecasting?

Applications that benefit from prior consideration of intra hour variability

- Regulation of heating and cooling systems
- Energy market
- Management of distribution grid
- Battery management

Differences to satellite based forecasting?

	Satellite	ASI
Temporal resolution	15 min	10 s
Spatial resolution	<1 km	~50 m
Forecast horizon	Several hours	10-20 min

Resolution and horizon of ASI based forecasting depends on the weather situation!

Source: Baywa r.e.

Differences to satellite based forecasting?

	Satellite	ASI
Temporal resolution	15 min	10 s
Spatial resolution	<1 km	~50 m
Forecast horizon	Several hours	10-20 min

Resolution and horizon of ASI based forecasting depends on the weather situation!

Sunny
Cloud shadow

Source: Baywa r.e.

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Differences to satellite based forecasting?

	Satellite	ASI
Temporal resolution	15 min	10 s
Spatial resolution	<1 km	~50 m
Forecast horizon	Several hours	10-20 min

Resolution and horizon of ASI based forecasting depends on the weather situation!

Availability:

- Satellite: Worldwide
- ASI:
 - Instruments have to be installed and maintained
 - Spatial coverage: ca. 10 km around camera
 - Forecast availability stongly dependent on weather situation!
 - Higher availability and horizon with several cameras

Source: Baywa r.e.

© Fraunhofer ISE FHG-SK: ISE-INTERN

Motivation

Comparison timeseries from satellite-based irradiance

Satellite based forecast

ASI based forecast

Advantage of ASI based forecasting: Forecasting of ramps resulting from single clouds

Comparison of ASI and satellite-based forecasts

Irradiance maps

All Sky Cameras

Camera types

- Professional all sky cameras ~10.000T€
- Surveillance cameras
 ~1.000T€
- Prototype development at research institutes

Image methods

- Visible Spectrum
- Infrared Spectrum
- High Dynamic Range

SONA Sieltec

Eko SRF-02 All-Sky Camera

ASI based irradiance retrieval

At Fraunhofer ISE

ASI based irradiance retrieval

At Fraunhofer ISE

Cloud detection

Example of a cloud detection algorithm

ASI based irradiance retrieval

At Fraunhofer ISE

Image undistortion

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Image undistortion

ASI based irradiance retrieval

At Fraunhofer ISE

sky imager shadow projection

sky imager shadow projection

sky imager shadow projection

Simulation

Dependence of cloud height

T.Schmidt: Potential and challenges of sky imager-based forecasting, 6th PV Performance Modelling and Monitoring Workshop, 24th October 2016

Simulation

Dependence of sun position

T.Schmidt: Potential and challenges of sky imager-based forecasting, 6th PV Performance Modelling and Monitoring Workshop, 24th October 2016

- → **Shadow projection**: Coverage depends strongly on CBH and sun position
- → Forecasts: Coverage depends additionally on the direction and velocity of cloud motion!

How to obtain information on cloud height?

- Ceilometers
- Multiple Cameras Stereo photography
- Satellite derived cloud height
- Cloud height from NWP models
- Cloud height by combining/matching information from different images/data sources:
- Stereography from different sky imagers
- Irradiance time series: ground measured/sky imager
- cloud speed ground measured/sky imager/Satellite/NWP

Nguyen, D.; Kleissl, J. (2014): Stereographic methods for cloud base height determination using two sky imagers. In *Solar Energy* 107, pp. 495–509. DOI: 10.1016/j.solener.2014.05.005.

ASI based irradiance retrieval

At Fraunhofer ISE

Statistic approach

Important metric Clear-sky Index

Ratio between Global horizontal irradiance (GHI) and GHI at clearsky conditions GHI_{clear}

• $k^* = \frac{GHI}{GHI_clear}$

- GHI_{clear} can be computed with high accuracy
- Can be > 1 due to reflections on downsides of clouds
- Removes diurnal dependencies
 - Direct metric for impact of clouds

© Fraunhofer ISE

Statistic approach

- Irradiance measurements from last period
- Analysis of clear sky index

Machine learning approach

Training

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Machine learning approach

Local features:

Mapping of the image pixel position to the position of the measurement stations e.g. pixel values, cloud mask, also average around pixel position

Global features:

e.g. cloud cover, sun position, irradiance at the camera position

Shadow map

Irradiance map

Cloud motion

*Philippe Weinzaepfel, Jérôme Revaud, Zaid Harchaoui, Cordelia Schmid. DeepFlow: Large displacement optical flow with deep matching. ICCV - IEEE International Conference on Computer Vision, Dec 2013, Sydney, Australia. IEEE, pp.1385-1392, 2013

Irradiance Forecast

Visualization

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

Irradiance Forecast

Visualization

Forecasted irradiance field in Freiburg

- 15 minutes ahead
- ASI in the center (red circle)
- 8 measuring stations (crosses)
 - Color code: measured irradiance

Challenges and limits of ASI based forecasts

Convection

- Clouds are no static objects; they form and dissolve and change their shape!
- Assumption that cloud motion persists is not true in many situations
- Forecast accuracy depends on the weather situation!

Solutions:

- Calculate uncertainty for specific situation
- Calculate divergence/convergence of cloud motion vectors

Challenges and limits of ASI based forecasts

Cloud layers

- More than one cloud layer can be present
- Cloud layers have different height and different motion vectors!

Solutions:

- Calculate cloud height pixelwise
- Calculate 3D cloud objects

But: Higher hidden cloud layer can hardly be detected and forecasted

Comparison of ASI and satellite-based forecasts

Evaluations with the measurement network in Freiburg

Dataset:

- ~17000 forecast runs over the course of one year
- Evaluated at Freiburg network 8 stations

$$RMSE = \sqrt{\frac{\sum_{i=0}^{N} (p_i - m_i)^2}{N}}$$

Comparison of ASI and satellite-based forecasts

Evaluations with the measurement network in Freiburg

Dataset:

- ~17000 forecast runs over the course of one year
- Evaluated at Freiburg network 8 stations

$$RMSE = \sqrt{\frac{\sum_{i=0}^{N} (p_i - m_i)^2}{N}}$$

Forecasting models:

- ASI Skyimager
- Satellite
- Persistence
 - Persistence of prevailing irradiance conditions
- Hybrid
 - Linear combination of three individual methods

Planned ASI measurement stations at La Reunion

Contact

Ø.

Anna Dittmann Anna.Dittmann@ise.fraunhofer.de

