Why we should always use probabilistic forecasting

Josselin LE GAL LA SALLE

21/08/2023

Deviation = *Bus depart time* - *Arriving time bus stop*

How can we optimize the decision ?

- 1. The cost function should be minimized
- 2. Minimal cost for a deviation of 0 minute
- 3. The bus will leave at 8:00 (information from forecast)
- 4. You need to arrive at the stop at 08:00
- \rightarrow Cost = 0 minute

Deterministic decision-making process

Are you Ready

For Explorations?

The Probabilistic approach

Applications for energy systems management

The probabilistic decision-making process

What is the impact on real life ?

Deterministic optimisation The naive traveler

Average waiting time	Missed buses	Annual waiting time
2'19"	176	88 hours

Probabilistic optimisation The smart traveller

Average waiting time	Missed buses	Annual waiting time
5'17"	19	38 hours

The deterministic prediction provides **one single information** (the most probable outcome), it is just **not the information needed** for proper optimisation !!!

The importance of the variance

What if the variance of the probability distribution changes ?

The importance of the variance

« If you never miss a plane, you're spending too much time at the airport » George Stigler, Nobel Prize in Economic Sciences (1982)

« If you never miss a plane, you're spending too much time at the airport » George Stigler, Nobel Prize in Economic Sciences (1982)

Time gap between arrival and gate closure (h)

A cultural parenthesis

Taken from Lock, Stock and Two Smoking Barrels, 1998

A cultural parenthesis

The right question is :

« Is the probability of winning the race higher or lower than 1%? »

Lopabilistic forecast (cumulative distribution) 0.6 0.2 0 0

Deterministic optimisation = Probabilistic optimisation ; Deterministic forecast OK

Problem

Typical Loss Function Deterministic optimisation ≠ Probabilistic optimisation ; Deterministic forecast insufficient

Problem

Typical Loss Function

energy systems management

Applications for

The CRE ZNI 2015 program

General rules :

- Production of solar electrivity on the distribution network
- Powerplant with storage

Specific rules :

• Obligation (and incitation) for supply during evening time (19h-21h)

200

400

• Obligation of programmation

Incomes

Penalties

800

Injection réseau (kW)

1000

Fictive photovoltaic powerplant

- Installed power : Pc = 1 MWc
- Electrochimical lithium-ion storage : 1 MWh capacity
- Contract price : 215 €/MWh

Building probabilistic forecasts

Ensemble forecasts (NWP)

- One « **reference** » simulation and several « **perturbed** » simulations
- The **dispersion** of the trajectories reflects **uncertainty**
- Time calculation increases

Spatial resolution on the island of La Réunion :

Building probabilistic forecasts

HRES forecasts

- One unique simulation
- « Quick » calculation times
- Finer spatial resolution

Spatial resolution on the island of La Réunion :

Deterministic versus probabilistic optimisation

An exemple of probabilistic optimisation (2020/10/17 with LQR1 forecast)

The benefits of probabilistic optimisation

The benefits of probabilistic optimisation

Applications for energy systems management

Deterministic forecasts Probabilistic forecasts

forecasts

forecast

0

Why using probabilistic forecasting and probabilistic optimisation ?

The quality of probabilistic forecasts

Evaluation of the quality of probabilistic forecasts

The Brier score

Negatively oriented score !! Brier Score = $(\hat{F} - o)^2$ $\mathbb{E}_{BS}(\hat{F}_1, Q_1) = Q_1(1 - \hat{F}_1)^2 + (1 - Q_1)\hat{F}_1^2$ $\forall Q_1, \min_{\hat{F}_1} \mathbb{E}_{BS}(\hat{F}_1, Q_1) = \mathbb{E}_{BS}(Q_1, Q_1)$

Evaluation of the quality of probabilistic forecasts

The Brier score

Negatively oriented score !! Brier Score = $(\hat{F} - o)^2$ $\mathbb{E}_{BS}(\hat{F}_1, Q_1) = Q_1(1 - \hat{F}_1)^2 + (1 - Q_1)\hat{F}_1^2$ $\forall Q_1, \min_{\widehat{F}_1} \mathbb{E}_{BS}(\widehat{F}_1, Q_1) = \mathbb{E}_{BS}(Q_1, Q_1)$ $\mathbb{E}_{BS}(\widehat{F}_1, Q_1) - \mathbb{E}_{BS}(Q_1, Q_1) = D(\widehat{F}_1, Q_1)$ $\mathbb{E}_{BS}(\hat{F}_1, Q_1) = \mathbb{E}_{BS}(\bar{O}, Q_1) - D(\bar{O}, \hat{F}_1) + D(\hat{F}_1, Q_1)$ Resolution (≥ 0) Reliability (≥ 0) Uncertainty

Thank you for your attention !

Any comment, recommendation, question ?

Don't hesitate to come and discuss or to write at josselin.le-gal-la-salle@univ-reunion.fr