

Date DTU

Optimal sizing methodology of HPP

Inputs

- Electricity prices for SM and BM
- Site location for weather data
- Technologies cost

Sizing Optimization

Output (Design Variables)			Output
Wind	Solar	Battery	Finance model
Rotor diameter, hub height	AC power	Power rating	NPV/CAPEX
Area of land	Surface tilt angle	Energy storage Capacity	IRR
Rated power	Surface azimuth angle		LCOE
Number of wind turbines			AEP
Wind power density			Number of batteries

Optimal sizing methodology of HPP

Financial model of HPP

C_H: Total CAPEX

O_H: Total OPEX

$$C_H = C_W + C_S + C_B + C_E$$

$$O_H = O_W + O_S + O_b + O_E$$

Financial parameter calculation

Net present Value
$$\longrightarrow$$
 $NPV = \sum_y F_y/(1 + \text{WACC}_{\text{tx}})^y$

Internal rate of return
$$0 = \sum_y F_y/(1 + IRR)^y$$

Annual energy production
$$C_L = \sum_y (O_H/(1+\text{WACC}_{\text{tx}})^y) + C_H$$
 Annual energy production
$$AEP_L = \sum_y (AEP_y/(1+\text{WACC}_{\text{tx}})^y)$$
 LCoE
$$= C_L/AEP_L$$

Let's see how HyDesign looks, and how it works.....

- Gitlab repository: <u>https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign</u>
- At the bottom -> link to documentation -> https://topfarm.pages.windenergy.dtu.dk/hydesign

CONTENTS Installation Guide How to Cite HyDesign Updates log Exercise 1: Advanced HPP Quickstart Model -> HPP design Advanced HPP Model evaluation Evaluating the performance of a hybrid power plant with P2X using HyDesign Size a HPP plant based on a simplified Exercise 2: HPP with hpp model multiple energy markets -> HyDesign sizing examples HPP design evaluation with Break-even price and power purchase agreement SM and BM Example: Sizing a plant to meet constant electrical load Export the DOE Offshore HPP How to use iso-probabilistic transformations to obtain weathercorrleated spot markets with a desired distribution HPP with multiple energy markets

Search docs

Welcome to hydesign %

A tool for design and control of utility scale wind-solar-storage based hybrid power plant.

For installation instructions, please see the Installation Guide.

Source code repository and issue tracker:

https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign

License:

MIT

Getting Started

The Quickstart section shows how to set up and perform some basic operations in hydesign.

Explanations of hydesign's core objects can be found in the following tutorials:

Contents

- Installation Guide
- How to Cite HyDesign
- Updates log

Tutorials

- Quickstart

- In this cell, the evaluation of a HPP design is done
- Select the size of HPP:
 - wind plant size in MW: Nwt * P_rated;
 - solar_MW;
 - battery size
 - b_P: battery power in MW
 - b_E_h: battery energy hours)

▼ Evaluating the HPP model

```
clearance = 10
    sp = 350
    p_rated = 5
    Nwt = 62
    wind_MW_per_km2 = 7
    solar_MW = 50
    surface_tilt = 50
    surface_azimuth = 180
    solar_DCAC = 1.5
    b_P = 20
    b_E_h = 3
    cost_of_batt_degr = 5
```


The output of the HPP model evaluation:

Objective function: maximize NPV/CAPEX

NPV: Net present Value

IRR: Internal rate of return

LCOE: Levelized cost of electricity

CAPEX: Total capital expenditure

OPEX: Total operational expenditure

AEP: Annual energy production

GUF: Grid utilization factor

Grid [MW]: grid capacity

NPV over CAPEX: 0.726 NPV [MEuro]: 230.293 IRR: 0.120 LCOE [Euro/MWh]: 22.151 CAPEX [MEuro]: 317.377 OPEX [MEuro]: 5.960 Wind CAPEX [MEuro]: 236.934 Wind OPEX [MEuro]: 5.622 PV CAPEX [MEuro]: 16.583 PV OPEX [MEuro]: 0.338 Batt CAPEX [MEuro]: 3.470 Batt OPEX [MEuro]: 0.000 Shared CAPEX [MEuro]: 60.390 Shared Opex [MEuro]: 0.000 penalty lifetime [MEuro]: 0.000 AEP [GWh]: 1321.424 GUF: 0.503 grid [MW]: 300.000 wind [MW]: 310.000 solar [MW]: 50.000 Battery Energy [MWh]: 60.000 Battery Power [MW]: 20.000 Total curtailment [GWh]: 417.558 Awpp [km2]: 44.286 Rotor diam [m]: 134.867 Hub height [m]: 77.434 Number of batteries: 1.000

exec. time [min]: 0.3864752968152364

Exercises: Download output files and plots

 The output files can be downloaded from here for further analysis. (Note: Remember to download and rename the file before starting the new simulation, the results won't get saved automatically)


```
df = pd.DataFrame(results_1year)
df.to_csv('EMS_out.csv')

design_df = design_df.transpose()
design_df.to_csv('output.csv')
```

- The output files can be renamed here.
- Re-run the evaluation function and check for the results.

Exercises: Notes

- Select site (9): Denmark_good_wind
- First, run the exercise with only HPP participating in spot market and save results.
- Next, run the exercise with HPP participating in spot and balancing (Intra-day) markets both (It works only for Wind + Battery plants, make solar_MW =0).
- By default: there are some specific design given (Wind + Battery HPP): Wind-350 MW, Grid connection-300 MW, Battery: 100 MW/ 300 MWh
- Check for improvement in NPV, NPV/CAPEX, LCOE for HPP participating in SM and BM both.
- Change the size of battery and plot the sensitivity of NPV/CAPEX with the battery size.
- Comment on the impact of grid connection capacity (100/ 300 MW) on econometrics (with SM + BM).

Exercises: Changing input file data

Download the input file 'hpp_pars.yml' -> contains technology (Wind, solar, battery, grid connection) costs value and other parameters

https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign/-/blob/main/hydesign/examples/Europe/hpp_pars.yml

```
hpp_pars.yml [ 5.12 KiB
                                                                                                  Open in Web IDE
                                                                                                                       Replace Delete
      4 G_MW: 300 # Grid capacity
      5 vear: '2012' # Single representative year
      6 N_life: 25
      11 wind_turbine_cost: 640_000 # [Euro/MW] for reference turbine
      12 wind_civil_works_cost: 260_000 # [Euro/MW]
      13 wind_fixed_onm_cost: 12_600 # Wind fixed O&M cost per year [Euro/MW /year]
      14 wind_variable_onm_cost: 1.35 #[EUR/MWh_e] Danish Energy Agency
      15
      16 wpp_efficiency: 1.0
      17 d_ref: 145
      18 hh_ref: 100
      19 p_rated_ref: 5.0 #[MW]
      24 solar_PV_cost: 110_000 # [Euro/MW DC]
      25 solar_hardware_installation_cost: 100_000 # [Euro/MW DC]
      26 solar_inverter_cost: 20_000 #[Euro/MW]
      27 solar_fixed_onm_cost: 4_500 # Solar O&M cost per year [Euro/MW] DC
      28 pv_deg_per_year: 0.5e-2
      29 land_use_per_solar_MW: 0.01226 # Danish energy agency
```


Exercises: Changing input file data

Modify the input data in 'hpp_pars.yml' as desired.
Upload the modified the input file 'hpp_pars.yml' in
the current directory. (Note: The file name can be
renamed as well)


```
name = 'France_good_wind'
ex_site = examples_sites.loc[examples_sites.name == name]

longitude = ex_site['longitude'].values[0]
latitude = ex_site['latitude'].values[0]
altitude = ex_site['altitude'].values[0]

input_ts_fn = examples_filepath
ex_site['input_ts_fn'].values[0]
sim_pars_fn = 'hpp_pars.yml'
```

 Rename the input file name in the notebook to point toward the modified set of inputs.

12

 Re-run the evaluation function and check for the results.

Tasks:

- 1. Change the size of wind plant/ battery/ grid capacity for example site 9 (check for just 2-3 different configurations) and compare change in values of
 - a) NPV
 - b) NPV/CAPEX
 - c) LCOE
 - d) AEP
 - e) GUF
 - f) Total curtailment
- 2. Perform any one set of HPP configurations (wind + battery) as in Exercise 1 with BM. Make comparison and analyze the results.
- 3. For HPP with BM, find optimal size of battery doing sensitivity analysis with an objective to maximize NPV/CAPEX

Sample template for results for one configuration				
S. No.	Parameter	HPP with SM	HPP with SM and BM	
1	NPV			
2	NPV/CAPEX			
3	LCOE			
4	AEP			
5	GUF		_	
6	Total cutailment			

Learning Objectives:

- Impact of the size of a HPP on the econometrics such as NPV/CAPEX, LCOE.
- Improvement in curtailment and econometrics of HPP when participating in multiple energy markets.
- Impact of cost of various technologies in HPP on the econometrics.