

Presenters:

Megha Gupta, Postdoc, DTU Wind and Energy Systems Kaushik Das, Associate Professor, DTU Wind and Energy Systems

Prepared by: Sumanth Yamujala, Polyneikis Kanellas, Megha Gupta, Kaushik Das



A utility-scale wind-solar-battery hybrid power plant is a crucial component of a larger, interconnected energy ecosystem, where renewable energy sources interact with market dynamics, weather conditions, and various energy sectors to meet the evolving needs of society.

OpenAI. (2024). ChatGPT (3.5) [Large language model]. https://chat.openai.com

OpenAI. (2024). ChatGPT [Large language model]. /g/g-pmuQfob8d-image-generator

DTU

### **DTU Hybrid Power Plant – Utility scale co-located grid connected**



| General<br>Features                                           | More than one generation sources involved                         |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| All assets are owned by same compar so higher controllability |                                                                   |  |  |  |  |  |
|                                                               | More RES integration with same grid connection                    |  |  |  |  |  |
|                                                               |                                                                   |  |  |  |  |  |
| Motivation                                                    | To reduce cost/ maximize revenue from<br>different energy markets |  |  |  |  |  |
|                                                               | One common energy management system                               |  |  |  |  |  |
|                                                               | Reduced curtailment means more value of RE                        |  |  |  |  |  |
|                                                               | Optimal utilization of land                                       |  |  |  |  |  |

More flexibility allows for decommissioning of fossil fuel-based generators



### Motivations for HPP – System Operators/Society

- Delayed requirement for transmission infrastructure reinforcement
- More RES integration with the same grid connection
- Optimal utilization of land
- Improved grid stability and security
- More flexibility allows for decommissioning of fossil fuel-based generators
- Increased capacity factor
- Reduced curtailment means more value from renewable energy

## Motivations for HPP – Owners / Developers

#### Cost reduction and Revenue increase

- Infrastructure
  - Reduction in land cost
  - Optimal use of electrical infrastructure and other infrastructure (e.g. access roads) saves costs
- Project Development
  - Joint permitting process reduces risks and costs
  - · Shared resources reduce internal costs
  - Joint site development reduces costs for e.g. soil investigations & weather measurements
- Park Performance
  - · Less fluctuating production increases electrical infrastructure utilization
  - Storage increases flexibility and number of accessible markets (Energy market, ancillary services market)
  - Reduction of forecast error using storage

Paulina Asbeck, "Next-Gen Generation System: The symbiotic relationship of solar, wind & storage hybrid power plants", 17th Wind Integration Workshop, 2018

| Reduction in variability      | Increase in availability                          |
|-------------------------------|---------------------------------------------------|
| Increase in capacity factor   | Reduction in cost                                 |
| Increase in revenue           | Increase in<br>ancillary<br>service<br>capability |
| Increa<br>lifetime<br>wind tu | ase of<br>of the<br>urbine                        |



### **Utility-scale Hybrid Power Plants around the world**



Rujie Zhu, "Optimal Energy Management of Hybrid Power Plants in Electricity Markets", PhD Thesis, DTU, 2023



### Modelling the environment

• DTU's Balancing Tool Chain

# Basics of balancing

Principle - Electricity production must always match the demand

#### Evolving Dynamics

- 1. Surge in VRE integration introducing variability and forecast uncertainty
- 2. Gradual phase-out of controllable generation sources.
- 3. Shifting consumption patterns and amplified uncertainties.

#### Market Dynamics

- 1. Majority of VRE is transacted in day-ahead markets.
- 2. Gate closures can be 12 to 36 hours before actual power delivery.
- 3. Considerable temporal separation results in forecast deviations.
- Generators and utilities meet the deviations (+/-) anticipated after the DA markets in the succeeding markets



# Balancing wind power forecast errors

(Danish system example)





**Contigency/disturbance** 





Slow variations due to forecast errors



# Load or wind variability

DA forecast error and perfect HA plan



# Balancing Tool Chain to capture all market dynamics

- On top of Balmorel investment runs
  - Or other scenarios
- Unit commitment and dispatch (spot market)
- Society cost of energy
- Balancing volume and costs (balancing model)
- Real time imbalance
- Frequency quality



# A quick look at the preceding steps



- The volume of VRE forecast errors is increasing with their integration
- Balancing is going to play a crucial role in the future

# **Key Terms**

| Balancing market                                        | entirety of institutional, commercial and operational arrangements that establish market-based management of balancing                                                                                                           |     |              |          |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|----------|
| Balance service provider                                | a market participant with reserve-providing units or reserve-<br>providing groups able to provide balancing services to TSOs                                                                                                     |     |              |          |
| Balance<br>responsible party                            | a market participant or its chosen representative responsible for its<br>imbalances (or) company that can and may handle the balance<br>responsibility for production and consumption units and/or trades<br>actual electricity. |     | <b>↑</b> , , |          |
| Frequency<br>Containment<br>Reserves                    | active power reserves available to contain system frequency after the occurrence of an imbalance.                                                                                                                                | Q   |              | <u> </u> |
| Automatic<br>Frequency<br>restoration reserve<br>(aFRR) | FRR that can be activated by an automatic control device                                                                                                                                                                         | Ğ   |              |          |
| manual Frequency<br>restoration reserve<br>(mFRR)       | Frequency Restoration Reserves with manual activation                                                                                                                                                                            | FCR | aFRR         | mFRR     |

# Q. What kind of balancing principles to be employed for future power and energy systems?

Three focal points: Types of reserves, procurement, and sources

#### Reserves/services:

Traditional: Relied heavily on inertia and AGC control from large and controllable generators Transition: Services targeting frequency regulation and containment, such as Dynamic services, Fast Reserve service,

Frequency Control Ancillary Services (FCAS), and FCRs for more precise and real-time frequency adjustments.

#### **Balancing Markets:**

Traditional: Centralized dispatch mechanisms, based on merit-order lists, day-ahead markets, or bilateral contracts Transition: Dynamic and intraday market mechanisms for balancing energy procurement like Dynamic reserve markets (DRM), cross-border markets, FCR Markets

#### Reserves Capacity (sources):

- Traditional: Dependent on large centralized power plants and occasionally industrial consumers for reserves, ensuring grid reliability during unforeseen events
- Transition: Diversification of resources contributing to reserves Virtual and hybrid power plants, DERs, energy storage, demand response, VRE technologies.

# Q. What kind of balancing principles to be employed for future power and energy systems?

| TSO           | Country | Traditional/Existing Balancing<br>Approach                                                                                            | New Balancing Approach                                                                                                                                           | Ref. |
|---------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| National Grid | UK      | Firm frequency response (FFR) – static and dynamic, monthly tender process                                                            | Dynamic Containment (DC), Dynamic Moderation (DM), and<br>Dynamic Regulation (DR) from automatic activation of<br>generators, energy storage, or demand response | [1]  |
| Terna         | Italy   | Procured through auctions                                                                                                             | Fast Reserve service for frequency regulation, technology-<br>neutral (can be standalone or aggregated) with required<br>technical specifications                | [2]  |
| 50Hertz       | Germany | Primary Control Reserve (PCR) and<br>Secondary Control Reserve (SCR)<br>from pre-qualified balancing service<br>providers             | Pan-European balancing markets: FCR, aFRR, mFRR from pre-<br>qualified BSPs                                                                                      | [3]  |
| RTE           | France  | manual frequency restoration and replacement reserves from BSPs qualified through annual tenders                                      | Operational member of TERRE for replacement reserves, non-<br>operational member for MARI and PICASSO                                                            | [4]  |
| Elia          | Belgium | aFRR, mFRR, and FCR markets from pre-qualified Balancing responsible parties (BRPs)                                                   | Non-operational member of all pan-European balancing markets                                                                                                     | [5]  |
| Energinet     | Denmark | Procured via auctions (qualification of BSPs). FFR capacity markets, FCR-D and FCR-N with Sweden, common Nordic aFRR and mFRR markets | Non-operational member for MARI and PICASSO                                                                                                                      | [6]  |

### DTU **Q.** What volume of operating reserve will future power systems require?



- the standard deviation of imbalances is less than 10% of the wind installed capacity for the respective years
- However, the magnitude of imbalances and standard deviation increase four-fold by 2045 from 2025 baseline - driven by VRE integration
  - A similar trend is observed for most of the balancing areas, with imbalance volumes increasing at least by a factor of 02

# Q. How much can the available generation fleet support the balancing reserve requirements?



- Determining Factors: Reserve sufficiency depends on the share & DA commitment of flexible generators and VRE forecast errors in a specific region.
- Current Operations: Generators recognized as "Balancing Service Providers" are predominantly held in standby or operate below their maximum potential (part load).
- Look-Ahead: With imbalance volumes predicted to surge by 4x, sustaining the current approach becomes economically untenable.
- Modeling Insight: Our study underscores that energy system planning models, even with assumed perfect foresight, might not deliver the required reserve precision.

#### > Strategies for the Future:

- 1. Amplify the inclusion of flexible generators.
- 2. Consider reserve sharing arrangements with adjacent regions.

# Q. How international cooperation can support the system requirements for balancing?

- In 2017, the European Agency for the Cooperation of Energy Regulators (ACER) and the European Network of Transmission System Operators for Electricity (ENTSO-E) issued guidelines to harmonize electricity balancing across European countries commonly referred as EBGL
- EBGL sets out a common framework for the procurement and activation of balancing services across the EU, with a focus on:
  - > The definition of balancing services and the different types of balancing services that are available
  - The roles and responsibilities of the different actors involved in the balancing market, such as transmission system operators (TSOs), balancing responsible parties (BRPs), and balancing service providers (BSPs)
  - > The rules for procuring and activating balancing services
  - The financial settlement of balancing services
- Key Initiatives: Development of platforms for
  - Manual Frequency Restoration Reserve (mFRR) MARI
  - > Automatic Frequency Restoration Reserve (aFRR) PICASSO
  - Replacement Reserves (RR) <u>TERRE</u>
  - Imbalance Netting (IN) IGCC
- The initiatives increase efficiency, reduce cost, and improve the security of supply

# MARI (Manual Frequency Restoration Reserve)

- MARI is a centralized platform to optimize mFRR energy exchange between European TSOs
- Brought into operation on October 5, 2022.
- Four German TSOs, ČEPS (Czechia), and APG (Austria) in operation, and further TSOs are expected to join in 2024.
- mFRR is a balancing service activated to restore grid frequency to its nominal value
- Once activated, BSPs must reach full capacity within 12.5 minutes and sustain for the subsequent 5 minutes
- Bidding Mechanism:
  - Supports both upward and downward mFRR
  - Gate closure: T-25 mins for BSPs and T-10 for TSOs
- Clearing & Settlement:
  - Gate closure auction model, constantly optimizing for current offers and bids, while accounting for the constraints
  - > Implements "pay-as-cleared" pricing, creating a transparent market equilibrium price
- Optimization constraints:
  - > Cross-border transmission capacities, current system imbalances, type of bids, Divisibility, and Activation type

# Information flow in MARI



| Operation                                                       | Gate closure |
|-----------------------------------------------------------------|--------------|
| BSPs providing their bids to the respective TSO → mFRR platform | T-25 mins    |
| TSO demand and CZC → mFRR platform                              | T-10 mins    |
| Communication on Selected bids to TSOs                          | T-7.5 mins   |
| BSPs full dispatch                                              | T+5 mins     |

# PICASSO

- PICASSO is The Platform for the International Coordination of Automated Frequency Restoration and Stable System Operation
- Facilitates the exchange of FRR with automatic activation on the European level
- aFRR is a secondary reserve that helps to maintain grid frequency
- Operational from June 2022, with 07 operational TSOs, others to join by July 2024



- TSO receives bids from BSPs in their LFC area
- TSO forwards standard aFRR balancing bids to platform
- 3. TSOs communicate Cross Border Capacity Limits to Platform
- TSOs communicate aFRR demands to platform 4.
- Communication of clearing results to TSO 5.
- Communication of aFRR request from each LFC to BSP 6.
- **Data Publication** 7.
- TSO-TSO settlement process and invoicing 8.
- 9. TSO-BSP settlement process and invoicing

NTC: Net Transfer Capacity AAC: Already Allocated Capacities **CBCL: Cross Border Capacity Limits** 



# Implementation of Balancing principles

# Q. How will evolving balancing methodologies affect market dynamics – prices, operational strategies, etc.?



- Understanding the significance of Balancing markets and their avenues require inputs from capacity expansion studies, VRE timeseries, power flows / transmission expansion, and day-ahead schedules
- BTC connects all the requisites starting from Capacity expansion to real-time operations.

$$imbal_{a,m}^{+} = max(0, P_{a,m}^{DA} - P_{a,m}^{HA})$$
$$imbal_{a,m}^{-} = max(0, P_{a,m}^{HA} - P_{a,m}^{DA})$$

Imbalance volumes for each balancing area *a* and time *m* 

- Positive imbalances (DA forecast >HA forecast) → Upregulation requirements
- Negative imbalances (HA forecast >DA forecast) → Downregulation requirements

# Balancing Optimization Model



### DTU Q. What is the value of flexibility from various technologies for balancing services?

#### **Test cases:**

Balancing requirements for future European power systems

Operation of Hybrid Power Plants in Europe in 2030



## Balancing requirements for future European power systems





Areas under study

- All scenario years (2025, 2035, and 2045) will have a VRE time series based on the weather year 2012.
- Imbalance volumes are determined solely based on wind power forecast
- Controllable (flexible) generators, excluding nuclear, that are cleared in day-ahead market are only eligible to provide balancing reserves. (partially relieved)
- Netting of imbalances is only limited to respective bidding zones (or) balancing areas
- Balancing areas (or areas) considered in this work represent the current bidding zones of countries being studied, except for Germany.
- Germany is classified into 04 balancing areas to highlight the intraregional transmission bottlenecks.

### DTU Day-Ahead market results



- Day-ahead schedules are in hourly resolution
- Flexible generators can participate in balancing markets
- Hourly schedules are converted into 5-minute temporal
- Net Transfer Capacity = Transmission capacity DA power flow

# Wind Power Forecast Error



- There is a substantial increase in wind power forecast error towards 2050 as compared to the 2025 values.
- Long tails depict that there can be very high forecast errors for very few hours of the year which pose additional challenges for power system balancing.

# Error due to hour shifting

- Imbalances can also occur due to hour shift
- DA commitments tend to meet energy obligations
- Ramp between two scheduling intervals may lead to imbalances in BA
- Lower triangle  $\rightarrow$  up-regulation requirement
- Upper triangle  $\rightarrow$  down-regulation requirement



## Activated balancing reserves - Up Regulation



- In CE, the imbalances are mainly counteracted using Natural gas and Pumped storage hydro
- In Nordic, the imbalances are mainly counteracted using Hydro
- Wind technologies are also used for up-regulation if they are being curtailed in the day-ahead schedule (imbalances for the durations of curtailment are considered to be zero)

# Preliminary Balancing Prices





- Extreme levels of prices are determined by backup generators and penalties for VRE curtailments
- For the intervals with no up/down-regulation requirements, regulation prices = area's DA market clearing price
- Areas with more dependencies on neighboring areas (say DK) tend to have higher regulation prices
- Limited by cross-border XB availability and correlated imbalances

DTU

## Wind Solar Battery HPP in Europe



Juan Pablo Murcia Leon, Kaushik Das, "Profitability Of Hybrid Power Plants In Europe", 22<sup>nd</sup> Wind and Solar Integration Workshop, 2023

**DTU Wind Energy** 



Juan Pablo Murcia Leon, Kaushik Das, "Profitability Of Hybrid Power Plants In Europe", 22<sup>nd</sup> Wind and Solar Integration Workshop, 2023

# 

## **Energy Management System in Nordic System**



Location: Western Denmark

| 0                  | Spot market | Balancin | g market     |
|--------------------|-------------|----------|--------------|
| Operation strategy | SMOpt       | BMOpt    | RDOpt        |
| SM                 | ✓           |          |              |
| SM+RD              | ✓           |          | 1            |
| SM+BM              | 1           | 1        |              |
| SM+BM+RD           | ×           |          | $\checkmark$ |

- ✓ Spot revenues are similar
- ✓ Balancing revenues are increased
- ✓ Re-dispatch helps reduce battery degradation
- $\checkmark$  Total profits are increased
- There are benefits to participate in balancing markets





### **Area Control- Dynamic Model**

# Need for frequency containment reserves

- Imbalances between the electricity demand and generation in real-time (or close to realtime) determine the system frequency which is crucial for system stability
- Frequency containment and restoration processes restore frequency to the target levels, in Europe usually 50.00Hz.
- Frequency containment reserves (FCR) quickly counteract frequency deviations that occur when there is an imbalance between electricity generation and consumption.
- FCR are important because they help to prevent blackouts.
- With EB regulation, common market for procurement and exchange of FCR (FCR Cooperation) was formed



# Operating frequency reserves



- Frequency Containment Reserves (FCR) are used seconds or minutes after the occurrence of the imbalance for the containment of frequency.
- The Frequency Restoration Reserves (FRR) are utilized around 15 minutes after the event to return the frequency to its normal range (49.9 - 50.1 Hz) and to release FCR already deployed back into use.
- Lastly, the Replacement Reserves (RR) release activated FRR back to a state of readiness for use to counteract new imbalances

# Operating frequency reserves



# Frequency control

- Post mFRR deployment, the anticipated load-generation imbalances are taken care of by aFRR
- aFRR is automatically instructed by the central Load Frequency Controller (LF Controller) of the TSO and automatically activated at the aFRR provider.
- The central controller continuously sends the activation signals (typically every 4 to 10s) to the aFRR providers
- aFRR is provided by units that are 'spinning'
- In the Nordic system (Finland, Sweden, Norway, and East Denmark), the TSOs have a common agreement to secure the obligated reserves for FCP and FRP. (they are in the process of integrating with Pan-European platforms)
- The balancing reserves products defined in the System Operation Agreement are namely the FCR-D, FCR-N, aFRR, and mFRR.
- The Frequency Containment Reserve for Normal operation (FCR-N) product is acting as a primary frequency control reserve and is used to balance the system within normal frequency band (49.9 - 50.1 Hz).
- In total, 600 MW of aggregated FCR-N are constantly maintained inside the Nordic area. Thus, the bias factor of the FCR-N is calculated as 600 MW/0.1Hz = 6000[MW/Hz]

# Frequency control



# Dynamic modeling of Continental Europe



- Large synchronous areas such as Continental Europe use a multi-tiered approach to frequency control.
- First, the frequency containment is done locally by proportional control in order to ensure the avoidance of power oscillations in an abnormal operational state.
- Next, the frequency restoration takes place in order for the system to return to its predisturbance state.
- The frequency restoration, through Automatic
  Generation Control (AGC) or Load-Frequency Control (LFC), is done automatically and has proportional-integral control (or only integral control) characteristics.
- Decentralized feedback implemented by each control area contributes to the overall balance in the synchronous area.

#### DTU Load-Frequency control (LFC)



- The aFRR is considered to be deployed by automatic LFC.
- The LFC control is modeled with an antiwindup PI controller together with a measurement filter.







### aFRR dimensioned

| Control Areas | aFRR available 2025 (GW) |
|---------------|--------------------------|
| GERMANY       | 2.12                     |
| HOLLAND       | 1.18                     |
| DK1           | 0.66                     |
| BELGIUM       | 1.09                     |
| NORDIC        | 1.57                     |

Dimensioned to handle 99% of the VRE forecast imbalance



#### VRE generation patterns model (CorRES) U Wind Energy Pvre\_tox[1h] Pvre\_tras[5m] Parket Model (OptiSpot) Pached\_Da[1h] Balancing Model (OptiBal)

### **System Inertia**



# Discussions

- Balancing is becoming more and more challenging
- The balancing principles varies in different countries
  - Depends on practices
  - Depends on capabilities and structure of power system
  - Depends on energy mix
- Harmonization of balancing in interconnected systems are becoming major issue
- Not considering wakes for balancing studies of future can cause substantial error in power systems operational planning in future

# HyDesign -- Sizing optimization of HPP

# -- Evaluating different designs

## HyDesign: Python-based open-source tool

- HyDesign is a software platform for design and operation of utility-scale hybrid power plants
- Multi-disciplinary optimization problem implemented in OpenMDAO
- Can be used for sizing optimization of HPP or for evaluation of a specific plant design
- Objective function is user specified (min LCOE, max NPV/CAPEX...)
- Key components: wind, solar, battery, hydrogen, grid-connection





#### Wednesday, 17 April 2024 DTU Wind Energy

Workflow of HyDesign: HPP Sizing tool





# **Optimal sizing methodology of HPP**

#### Inputs

- Electricity prices for SM and BM
- Site location for weather data
- Technologies cost



| Output                     | Output                |                            |                     |
|----------------------------|-----------------------|----------------------------|---------------------|
| Wind                       | Solar                 | Battery                    | Finance model       |
| Rotor diameter, hub height | AC power              | Power rating               | NPV/CAPEX           |
| Area of land               | Surface tilt angle    | Energy storage<br>Capacity | IRR                 |
| Rated power                | Surface azimuth angle |                            | LCOE                |
| Number of wind turbines    |                       |                            | AEP                 |
| Wind power density         |                       |                            | Number of batteries |



### **Optimal sizing methodology of HPP**

#### **Financial model of HPP**

 $C_{H}$ : Total CAPEX  $O_{H}$ : Total OPEX  $C_{H} = C_{W} + C_{S} + C_{B} + C_{E}$  $O_{H} = O_{W} + O_{S} + O_{b} + O_{E}$ 

#### **Financial parameter calculation**



## **Optimal sizing methodology of HPP**

Sizing optimization results for 3 example sites in India with an objective function as:

- NPV/CAPEX
- LCoE

Key observations:

- Investments in PV plant or wind plant are dependent on the site location.
- With the objective function to minimize LCoE, investments in battery is not preferred.
- Positive NPV, and higher IRR indicates a good business case.

| Site                |           | Good solar |           | Good wind |           | Bad solar bad wind |           |
|---------------------|-----------|------------|-----------|-----------|-----------|--------------------|-----------|
| Design objective    |           | LCoE       | $NPV/C_H$ | LCoE      | $NPV/C_H$ | LCoE               | $NPV/C_H$ |
| Design Variables    | Units     |            |           |           |           |                    |           |
| $h_c$               | m         | 10         | 10        | 10        | 10        | 10                 | 10        |
| sp                  | $W/m^2$   | 200        | 200       | 360       | 360       | 200                | 200       |
| $P_{\rm rated}$     | MW        | 1          | 1         | 8         | 4         | 1                  | 1         |
| NWT                 | 25        | 0          | 0         | 38        | 66        | 0                  | 0         |
| ρw                  | $MW/km^2$ | 5.0        | 5.0       | 7.8       | 7.4       | 5.0                | 7.5       |
| $S_{MW}$            | MW        | 322        | 400       | 0         | 54        | 328                | 400       |
| $\theta_{\rm tilt}$ | deg.      | 28.3       | 35.0      | 0.0       | 21.1      | 24.8               | 29.5      |
| $\theta_{azim}$     | deg.      | 210        | 210       | 150       | 210       | 210                | 210       |
| rAD                 | -         | 1.5        | 1.6       | 1.0       | 1.7       | 1.7                | 1.9       |
| Bp                  | MW        | 0          | 104       | 0         | 57        | 0                  | 150       |
| b <sub>E h</sub>    | hours     | 1          | 7         | 4         | 4         | 1                  | 7         |
| $C_{bfl}$           |           | 0.0        | 0.0       | 16.0      | 0.7       | 26.7               | 0.0       |
| Design Summary      |           |            |           |           |           |                    |           |
| G                   | MW        | 300        | 300       | 300       | 300       | 300                | 300       |
| $W_{MW}$            | MW        | 0          | 0         | 304       | 264       | 0                  | 0         |
| $S_{MW}$            | MW        | 322        | 400       | 0         | 54        | 328                | 400       |
| $B_P$               | MW        | 0          | 104       | 0         | 57        | 0                  | 150       |
| $B_E$               | MWh       | 0          | 728       | 0         | 228       | 0                  | 1050      |
| $N_B$               | 24        | 0          | 2         | 0         | 3         | 0                  | 2         |
| D                   | m         | 27         | 2         | 168       | 119       | с.                 | 4         |
| hh                  | m         | 27         | 2         | 94        | 69        | 2                  | 2         |
| Outputs             |           |            |           |           |           | 94<br>             |           |
| $NPV/C_H$           | 25        | -0.264     | 0.747     | 0.996     | 1.042     | -0.548             | 0.537     |
| NPV                 | MEuro     | -42.5      | 178.0     | 304.9     | 304.8     | -96.0              | 151.5     |
| IRR                 | -         | -          | 0.128     | 0.145     | 0.151     | -                  | 0.110     |
| LCOE                | Euro/MWh  | 18.73      | 22.26     | 17.51     | 19.13     | 21.06              | 26.82     |
| $C_H$               | MEuro     | 160.9      | 238.3     | 306.2     | 292.6     | 175.1              | 282.3     |
| $O_H$               | MEuro     | 2.2        | 2.9       | 5.2       | 6.1       | 2.5                | 3.4       |
| llife               | MEuro     | 372        | 3.8       | 99        | 41        | 417                | 2.9       |
| AEP                 | GWh       | 732        | 927       | 1564      | 1441      | 712                | 918       |
| $AE_{curt}$         | GWh       | 4.5        | 1.3       | 0.9       | 0.0       | 7.2                | 2.3       |
| GUF                 | -:        | 0.28       | 0.35      | 0.60      | 0.55      | 0.27               | 0.35      |

Murcia Leon, Juan Pablo, Hajar Habbou, Mikkel Friis-Møller, Megha Gupta, Rujie Zhu, and Kaushik Das. "HyDesign: a tool for sizing optimization for grid-connected hybrid power plants including wind, solar photovoltaic, and Li-ion batteries." *Wind Energy Science Discussions* 2023 (2023): 1-22.

### Energy management system optimization model (EMS): only Spot Market



DTII

# Energy management system optimization model (EMS): multiple energy markets





# Let's see how HyDesign looks, and how it works.....

- Gitlab repository: <u>https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign</u>
- At the bottom -> link to documentation -> <u>https://topfarm.pages.windenergy.dtu.dk/hydesign</u>

### **Exercises:**

**Exercise 1:** Advanced HPP Model -> HPP design evaluation

**Exercise 2:** HPP with multiple energy markets -> HPP design evaluation with SM and BM

### Search docs

#### CONTENTS

Installation Guide

How to Cite HyDesign

Updates log

#### TUTORIALS

Quickstart

#### Advanced HPP Model

Evaluating the performance of a hybrid power plant with P2X using HyDesign

Size a HPP plant based on a simplified hpp model

HyDesign sizing examples

Break-even price and power purchase agreement

Example: Sizing a plant to meet constant electrical load

Export the DOE

Offshore HPP

How to use iso-probabilistic transformations to obtain weathercorrleated spot markets with a desired distribution

HPP with multiple energy markets

#### Welcome to hydesign %

A tool for design and control of utility scale wind-solar-storage based hybrid power plant.

For installation instructions, please see the Installation Guide.

#### Source code repository and issue tracker:

https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign

License:

MIT

#### **Getting Started**

The Quickstart section shows how to set up and perform some basic operations in hydesign.

Explanations of hydesign's core objects can be found in the following tutorials:

#### Contents

- Installation Guide
- How to Cite HyDesign
- Updates log

#### Tutorials

. Ouickstart



DTU



# DTU

### **Exercises:**

- In this cell, the evaluation of a HPP design is done
- Select the size of HPP:
  - wind plant size in MW: Nwt \* P\_rated;
  - solar\_MW;
  - battery size
    - b\_P: battery power in MW
    - b\_E\_h: battery energy hours)

```
✓ Evaluating the HPP model
```

### **Exercises:**

#### The output of the HPP model evaluation:

Objective function: maximize NPV/CAPEX NPV: Net present Value IRR: Internal rate of return LCOE: Levelized cost of electricity CAPEX: Total capital expenditure OPEX: Total operational expenditure AEP: Annual energy production GUF: Grid utilization factor Grid [MW]: grid capacity NPV over CAPEX: 0.726 NPV [MEuro]: 230.293 IRR: 0.120 LCOE [Euro/MWh]: 22.151 CAPEX [MEuro]: 317.377 OPEX [MEuro]: 5.960 Wind CAPEX [MEuro]: 236.934 Wind OPEX [MEuro]: 5.622 PV CAPEX [MEuro]: 16.583 PV OPEX [MEuro]: 0.338 Batt CAPEX [MEuro]: 3.470 Batt OPEX [MEuro]: 0.000 Shared CAPEX [MEuro]: 60.390 Shared Opex [MEuro]: 0.000 penalty lifetime [MEuro]: 0.000 AEP [GWh]: 1321.424 GUF: 0.503 grid [MW]: 300.000 wind [MW]: 310.000 solar [MW]: 50.000 Battery Energy [MWh]: 60.000 Battery Power [MW]: 20.000 Total curtailment [GWh]: 417.558 Awpp [km2]: 44.286 Rotor diam [m]: 134.867 Hub height [m]: 77.434 Number of batteries: 1.000

exec. time [min]: 0.3864752968152364



### **Exercises: Download output files and plots**

• The output files can be downloaded from here for further analysis. (Note: Remember to download and rename the file before starting the new simulation, the results won't get saved automatically)





- The output files can be renamed here.
- Re-run the evaluation function and check for the results.



### **Exercises:** Notes

- Select site (9): Denmark\_good\_wind
- First, run the exercise with only HPP participating in spot market and save results.
- Next, run the exercise with HPP participating in spot and balancing (Intra-day) markets both (It works only for Wind + Battery plants, make solar\_MW =0).
- By default: there are some specific design given (Wind + Battery HPP): Wind-350 MW, Grid connection-300 MW, Battery: 100 MW/ 300 MWh
- Check for improvement in NPV, NPV/CAPEX, LCOE for HPP participating in SM and BM both.
- Change the size of battery and plot the sensitivity of NPV/CAPEX with the battery size.
- Comment on the impact of grid connection capacity (100/ 300 MW) on econometrics (with SM + BM).

### **Exercises: Changing input file data**

Download the input file 'hpp\_pars.yml' -> contains technology (Wind, solar, battery, grid connection) costs value and other parameters

https://gitlab.windenergy.dtu.dk/TOPFARM/hydesign/-/blob/main/hydesign/examples/Europe/hpp\_pars.yml

| 🖺 hpp_pa | rs.yml ( <sup>6</sup> ) 5.12 KiB                                                          | Open in Web IDE | - Replace | Delete | 6 | 4 |
|----------|-------------------------------------------------------------------------------------------|-----------------|-----------|--------|---|---|
| 1        | #                                                                                         |                 |           |        |   | _ |
| 2        | # HPP Global                                                                              |                 |           |        |   |   |
| 3        | #                                                                                         |                 |           |        |   |   |
| 4        | G_MW: 300 # Grid capacity                                                                 |                 |           |        |   |   |
| 5        | year: '2012' # Single representative year                                                 |                 |           |        |   |   |
| 6        | N_life: 25                                                                                |                 |           |        |   |   |
| 7        |                                                                                           |                 |           |        |   |   |
| 8        | #                                                                                         |                 |           |        |   |   |
| 9        | # Wind                                                                                    |                 |           |        |   |   |
| 10       |                                                                                           |                 |           |        |   |   |
| 11       | <pre>wind_turbine_cost: 640_000 # [Euro/NW] for reference turbine</pre>                   |                 |           |        |   |   |
| 12       | wind_civil_works_cost: 260_000 # [Euro/NW]                                                |                 |           |        |   |   |
| 13       | <pre>wind_fixed_onm_cost: 12_600 # Wind fixed O&amp;M cost per year [Euro/MW /year]</pre> |                 |           |        |   |   |
| 14       | wind_variable_onm_cost: 1.35 #[EUR/Mwh_e] Danish Energy Agency                            |                 |           |        |   |   |
| 15       |                                                                                           |                 |           |        |   |   |
| 16       | wpp_efficiency: 1.0                                                                       |                 |           |        |   |   |
| 17       | d_ref: 145                                                                                |                 |           |        |   |   |
| 18       | hh_ref: 100                                                                               |                 |           |        |   |   |
| 19       | p_rated_ref: 5.0 #[MW]                                                                    |                 |           |        |   |   |
| 20       |                                                                                           |                 |           |        |   |   |
| 21       | #                                                                                         |                 |           |        |   |   |
| 22       | # PV                                                                                      |                 |           |        |   |   |
| 23       | <i>a</i>                                                                                  |                 |           |        |   |   |
| 24       | solar_PV_cost: 110_000 # [Euro/NW DC]                                                     |                 |           |        |   |   |
| 25       | <pre>Solar_hardware_installation_cost: 100_000 # [Euro/MW DC]</pre>                       |                 |           |        |   |   |
| 26       | solar_inverter_cost: 28_000 #[Euro/NW]                                                    |                 |           |        |   |   |
| 27       | <pre>solar_fixed_onm_cost: 4_500 # Solar O&amp;M cost per year [Euro/MW] DC</pre>         |                 |           |        |   |   |
| 28       | pv_deg_per_year: 0.5e-2                                                                   |                 |           |        |   |   |
| 29       | land_use_per_solar_MW: 0.01226 # Danish energy agency                                     |                 |           |        |   |   |

### **Exercises: Changing input file data**

 Modify the input data in 'hpp\_pars.yml' as desired. Upload the modified the input file 'hpp\_pars.yml' in the current directory. (Note: The file name can be renamed as well)



name = 'France\_good\_wind' ex\_site = examples\_sites.loc[examples\_sites.name == name] longitude = ex\_site['longitude'].values[0] latitude = ex\_site['latitude'].values[0] altitude = ex\_site['altitude'].values[0] input\_ts\_fn = examples\_filepath+ex\_site['input\_ts\_fn'].values[0] sim\_pars\_fn = 'hpp\_pars.yml'

- Rename the input file name in the notebook to point toward the modified set of inputs.
- Re-run the evaluation function and check for the results.

### Tasks:

DTU

=

- 1. Change the size of wind plant/ battery/ grid capacity for example site 9 (check for just 2-3 different configurations) and compare change in values of
  - a) NPV
  - b) NPV/CAPEX
  - c) LCOE
  - d) AEP
  - e) GUF
  - f) Total curtailment
- 2. Perform any one set of HPP configurations (wind + battery) as in Exercise 1 with BM. Make comparison and analyze the results.
- 3. For HPP with BM, find optimal size of battery doing sensitivity analysis with an objective to maximize NPV/CAPEX

| Sample template for results for one configuration |                  |             |                    |  |  |
|---------------------------------------------------|------------------|-------------|--------------------|--|--|
| S. No.                                            | Parameter        | HPP with SM | HPP with SM and BM |  |  |
| 1                                                 | NPV              |             |                    |  |  |
| 2                                                 | NPV/CAPEX        |             |                    |  |  |
| 3                                                 | LCOE             |             |                    |  |  |
| 4                                                 | AEP              |             |                    |  |  |
| 5                                                 | GUF              |             |                    |  |  |
| 6                                                 | Total cutailment |             |                    |  |  |



### **Learning Objectives:**

- Impact of the size of a HPP on the econometrics such as NPV/CAPEX, LCOE.
- Improvement in curtailment and econometrics of HPP when participating in multiple energy markets.
- Impact of cost of various technologies in HPP on the econometrics.