Publication library
M., David, J., Alonso-Montesinos, J., Le Gal La Salle, P., Lauret (2023). Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera. Energies, 16, 7125. https://doi.org/10.3390/en16207125
Abstract
With the fast increase of solar energy plants, a high-quality short-term forecast is required to smoothly integrate their production in the electricity grids. Usually, forecasting systems predict the future solar energy as a continuous variable. But for particular applications, such as concentrated solar plants with tracking devices, the operator needs to anticipate the achievement of a solar irradiance threshold to start or stop their system. In this case, binary forecasts are more relevant. Moreover, while most forecasting systems are deterministic, the probabilistic approach provides additional information about their inherent uncertainty that is essential for decision-making. The objective of this work is to propose a methodology to generate probabilistic solar forecasts as a binary event for very short-term horizons between 1 and 30 min. Among the various techniques developed to predict the solar potential for the next few minutes, sky imagery is one of the most promising. Therefore, we propose in this work to combine a state-of-the-art model based on a sky camera and a discrete choice model to predict the probability of an irradiance threshold suitable for plant operators. Two well-known parametric discrete choice models, logit and probit models, and a machine learning technique, random forest, were tested to post-process the deterministic forecast derived from sky images. All three models significantly improve the quality of the original deterministic forecast. However, random forest gives the best results and especially provides reliable probability predictions.
M., David, M.N. Andriamandroso, M. N., P., Behrensdorff Poulsen, J., Castaing-Lasvignottes, N., Cutululis, K., Das, C., Durif-Aboukali, J., Francou, P., Lauret, J., Le Gal La Salle, E., Lorenz, O., Marc, D., Melgar and S., Spataru (2023). A set of study cases for the massive integration of solar renewables in non-interconnected areas. SWC 2023: ISES Solar World Congress 2023, New-Delhi, 30 Oct. – 4 Nov. https://doi.org/10.18086/swc.2023.05.02
Abstract
E., Lorenz, T., Zech, W., Herzberg, P., Lauret, M., David (2024). Probabilistische Kurzfristvorhersage der Globalstrahlung mittels Analog Ensemble unter Nutzung von satellitenbasierter Einstrahlung. Fachtagung Energiemeteorologie, Bad Staffelstein, Germany, 24 Jan..
Abstract
J., Le Gal La Salle, M., David, P., Lauret (2024). Finding the Optimal Size and Design of a Microgrid Energy System Using Genetic Algorithm. EU PVSEC 2024, Vienna, Austria, 23-27 Sept. 2024.
Abstract
T. A., Randrianantenaina, J., Le Gal La Salle, S. V., Spataru, M., David (2024). Increasing the self-sufficiency of the Terre Sainte campus microgrid by expanding the PV capacity while minimizing the cost. EU PVSEC 2024, Vienna, Austria, 23-27 Sept. 2024.
Abstract
This work is dedicated to enhance the self-sufficiency of the the Terre Sainte campus of the University of La Reunion with onsite solar energy production. The main goal is to boost energy production by integrating additional photovoltaic (PV) panels while minimizing the installation and operation costs. To navigate toward this objective, four distinct tasks have been outlined. The first focus of the study is on validating the collected data before its application. Five thorough quality check tests have been carefully performed. This work clearly explains the significant importance of each test in ensuring the reliability of the dataset. Moving forward, the study dives into the simulation of the current microgrid PV systems, drawing comparisons with recorded data to assess the accurracy and reliability of the model. This step is important in establishing the performance of the simulation tool and its alignment with actual observations. In the next step, the research work provides a comprehensive exploration of the available rooftop areas on the campus, strategically identifying potential expanses for the scaling up of the microgrid PV capacity. By analyzing these available areas, the study lays the foundation for informed decision-making in the pursuit of an optimized and efficient solar energy system. Finally, using the results of the previous tasks, this study focuses on minimizing the Levelized Cost of Energy for self-consumption (LCOEsc) while maximizing the self-sufficiency. This strategic approach aims to help identify the optimal combinations of rooftops suitable for installing the additional PV panels.
Find back all previous editions of the TwInSolar newsletter.
Do not forget to subscribe to receive the next editions!