Les partenaires de TwInSolar sont heureux de partager avec vous la dernière publication liée au projet et intitulée : « Probabilistic Solar Forecasts as a Binary Event Using a Sky Camera », publiée dans le journal Open Access Energies.
Ecrite par Mathieu David, Josselin Le Gal La Salle, Philippe Lauret (PIMENT, University of La Reunion, France) and Joaquín Alonso-Montesinos (Department of Chemistry and Physics, University of Almería and CIESOL, Joint Center of the University of Almería, Spain), cet article explore les questions suivantes :
Résumé :
Avec l’augmentation rapide des énergies solaires, une prévision à court terme de haute qualité est nécessaire pour intégrer en douceur leur production dans les réseaux électriques. Habituellement, les systèmes de prévision prédisent l’énergie solaire future sous la forme d’une variable continue. Mais pour des applications particulières, telles que les centrales à concentration équipées de dispositifs de suivi de la course du soleil, l'exploitant doit anticiper l'atteinte d'un seuil de rayonnement solaire pour démarrer ou arrêter son système. Dans ce cas, les prévisions binaires sont plus pertinentes. De plus, même si la plupart des systèmes de prévision sont déterministes, l’approche probabiliste fournit des informations supplémentaires sur leur incertitude inhérente, essentielles à la prise de décision. L'objectif de ce travail est de proposer une méthodologie pour générer des prévisions solaires probabilistes sous forme d'événement binaire pour des horizons à très court terme compris entre 1 et 30 min. Parmi les différentes techniques développées pour prédire le potentiel solaire dans les prochaines minutes, l’imagerie du ciel est l’une des plus prometteuses. Ainsi, nous proposons dans ce travail de combiner un modèle basé sur une caméra du ciel et un modèle de choix discret pour prédire la probabilité d'atteindre un seuil d'irradiation adapté aux exploitants de centrales solaires. Deux modèles paramétriques à choix discrets bien connus, les modèles logit et probit, ainsi qu'une technique d'apprentissage automatique, la forêt aléatoire, ont été testés pour post-traiter la prévision déterministe issues des images du ciel. Les trois modèles améliorent considérablement la qualité de la prévision déterministe originale. Cependant, la forêt aléatoire donne les meilleurs résultats et fournit surtout des prévisions probabilistes fiables.